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a b s t r a c t 

The COVID-19 pandemic is causing a major outbreak in more than 150 countries around the world, hav- 

ing a severe impact on the health and life of many people globally. One of the crucial step in fighting 

COVID-19 is the ability to detect the infected patients early enough, and put them under special care. De- 

tecting this disease from radiography and radiology images is perhaps one of the fastest ways to diagnose 

the patients. Some of the early studies showed specific abnormalities in the chest radiograms of patients 

infected with COVID-19. Inspired by earlier works, we study the application of deep learning models to 

detect COVID-19 patients from their chest radiography images. We first prepare a dataset of 50 0 0 Chest 

X-rays from the publicly available datasets. Images exhibiting COVID-19 disease presence were identified 

by board-certified radiologist. Transfer learning on a subset of 20 0 0 radiograms was used to train four 

popular convolutional neural networks, including ResNet18, ResNet50, SqueezeNet, and DenseNet-121, to 

identify COVID-19 disease in the analyzed chest X-ray images. We evaluated these models on the remain- 

ing 30 0 0 images, and most of these networks achieved a sensitivity rate of 98% ( ± 3%), while having a 

specificity rate of around 90%. Besides sensitivity and specificity rates, we also present the receiver oper- 

ating characteristic (ROC) curve, precision-recall curve, average prediction, and confusion matrix of each 

model. We also used a technique to generate heatmaps of lung regions potentially infected by COVID-19 

and show that the generated heatmaps contain most of the infected areas annotated by our board cer- 

tified radiologist. While the achieved performance is very encouraging, further analysis is required on a 

larger set of COVID-19 images, to have a more reliable estimation of accuracy rates. The dataset, model 

implementations (in PyTorch), and evaluations, are all made publicly available for research community at 

https://github.com/shervinmin/DeepCovid.git 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Since December 2019, a novel corona-virus (SARS-CoV-2) has

pread from Wuhan to the whole China, and many other coun-

ries. By April 18, more than 2 million confirmed cases, and more

han 150,0 0 0 deaths were reported in the world ( https://www.

orldometers.info/coronavirus/ ). Due to unavailability of therapeu-
∗ Corresponding author. 
∗∗ Corresponding author. 
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ic treatment or vaccine for novel COVID-19 disease, early diagno-

is is of real importance to provide the opportunity of immediate

solation of the suspected person and to decrease the chance of

nfection to healthy population. Reverse transcription polymerase

hain reaction (RT-PCR) or gene sequencing for respiratory or blood

pecimens are introduced as main screening methods for COVID-

9 ( Wang et al., 2020 ). However, total positive rate of RT-PCR for

hroat swab samples is reported to be 30 to 60%, which accordingly

ields to un-diagnosed patients, which may contagiously infect a

uge population of healthy people ( Yang et al., 2020 ). Chest radio-

raphy imaging (e.g., X-ray or computed tomography (CT) imag-

ng) as a routine tool for pneumonia diagnosis is easy to perform

https://doi.org/10.1016/j.media.2020.101794
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101794&domain=pdf
https://github.com/shervinmin/DeepCovid.git
https://www.worldometers.info/coronavirus/
mailto:sminaee@snap.com
mailto:rkafieh@amt.mui.ac.ir
https://doi.org/10.1016/j.media.2020.101794
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Fig. 1. Three sample COVID-19 images, and the corresponding marked areas by our radiologist. 
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with fast diagnosis. Chest CT has a high sensitivity for diagnosis

of COVID-19 ( Ai et al., 2020 ) and X-ray images show visual in-

dexes correlated with COVID-19 ( Kanne et al., 2020 ). The reports

of chest imaging demonstrated multilobar involvement and periph-

eral airspace opacities. The opacities most frequently reported are

ground-glass (57%) and mixed attenuation (29%) ( Kong and Agar-

wal, 2020 ). During the early course of COVID-19, ground glass pat-

tern is seen in areas that edges the pulmonary vessels and may

be difficult to appreciate visually ( Hansell et al., 2008 ). Asym-

metric patchy or diffuse airspace opacities are also reported for

COVID-19 ( Rodrigues, 2020 ). Such subtle abnormalities can only be

interpreted by expert radiologists. Considering huge rate of sus-

pected people and limited number of trained radiologists, auto-

matic methods for identification of such subtle abnormalities can

assist the diagnosis procedure and increase the rate of early diag-

nosis with high accuracy. Artificial intelligence (AI)/machine learn-

ing solutions are potentially powerful tools for solving such prob-

lems. 

So far, due to the lack of availability of public images of COVID-

19 patients, detailed studies reporting solutions for automatic de-

tection of COVID-19 from X-ray (or Chest CT) images are not avail-

able. Recently a small dataset of COVID-19 X-ray images was col-

lected, which made it possible for AI researchers to train machine

learning models to perform automatic COVID-19 diagnostics from

X-ray images ( Cohen et al., 2020 ). These images were extracted

from academic publications reporting the results on COVID-19 X-

ray and CT images. With the help of a board-certified radiologist,

we re-labeled those images, and only kept ones a clear sign of

COVID-19 as determined by our radiologist. Three sample images

with their corresponding marked areas are shown in Fig. 1 . We

then used a subset of images from ChexPert ( Irvin et al., 2019 )

dataset, as the negative samples for COVID-19 detection. The com-

bined dataset has around 50 0 0 Chest X-ray images (called COVID-

Xray-5k), which is divided into 20 0 0 training, and 30 0 0 testing

samples. 
t  
A machine a learning framework was employed to predict

OVID-19 from Chest X-ray images. Unlike the classical approaches

or medical image classification which follow a two-step procedure

hand-crafted feature extraction+recognition), we use an end-to-

nd deep learning framework which directly predicts the COVID-

9 disease from raw images without any need of feature extrac-

ion. Deep learning based models (and more specifically convolu-

ional neural networks (CNN)) have been shown to outperform the

lassical AI approaches in most of computer vision and and med-

cal image analysis tasks in recent years, and have been used in

 wide range of problems from classification, segmentation, face

ecognition, to super-resolution and image enhancement ( LeCun,

998; Badrinarayanan et al., 2017; Ren et al., 2015; Dong, 2014; Mi-

aee et al., 2019 ). 

Here, we train 4 popular convolutional networks which have

chieved promising results in several tasks during recent years

including ResNet18, ResNet50, SqueezeNet, and DenseNet-161) on

OVID-Xray-5k dataset, and analyze their performance for COVID-

9 detection. Since so far there is a limited number of X-ray im-

ges publicly available for the COVID-19 class, we cannot simply

rain these models from scratch. Two strategies were adopted to

ddress the COVID-19 image scarcity issue in this work: 

• We use data augmentation to create transformed version of

COVID-19 images (such as flipping, small rotation, adding small

amount of distortions), to increase the number of samples by a

factor of 5. 
• Instead of training these models from scratch, we fine-tune the

last layer of the pre-trained version of these models on Ima-

geNet. In this way, the model can be trained with less labeled

samples from each class. 

The above two strategies helped train these networks with the

vailable images, and achieve reasonable performance on the test

et of 30 0 0 images. Since the number of samples for the COVID-

9 class is limited, we also calculate the confidence interval of

he performance metrics. To report a summarizing performance
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Fig. 2. Sample images from COVID-Xray-5k dataset. The images in the first row show 4 COVID-19 images. The images in the second row are 4 sample images of no-finding 

category in Non-COVID images from ChexPert . The images in the third and fourth rows give 8 sample images from other sub-categotries in ChexPert . 
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f these models, we provide the Receiver operating characteris-

ic (ROC) curve, and area under the curve (AUC) for each of these

odels. 

Here are the main contributions of this paper: 

• We prepared a dataset of 50 0 0 images with binary labels, for

COVID-19 detection from Chest X-ray images. This dataset can

serve as a benchmark for the research community. The images

in COVID-19 class, are labeled by a board-certified radiologist,

and only those with a clear sign are used for testing purpose. 
• We trained four promising deep learning models on this

dataset, and evaluated their performance on a test set of 30 0 0

images. Our best performing model achieved a sensitivity rate

of 98%, while having a specificity of 92%. 
• We provided a detailed experimental analysis on the perfor-

mance of these models, in terms of sensitivity, specificity, ROC
curve, area under the curve, precision-recall curve, and his-

togram of the predicted scores. 
• We provided the heatmaps of the most likely regions, which are

infected due to Covid-19, using a deep visualization technique. 
• We made the dataset, the trained models, and the implementa-

tion publicly available. 

It is worth to mention that while very encouraging, given the

mount of the labeled data the result of this work is still prelim-

nary and more concrete conclusion requires further experiments

n a larger dataset of COVID-19 labeled X-ray images. We believe

his work can serve as a benchmark for future works and compar-

sons. 

The structure of the rest of this paper is as follows.

ection 2 provides a summary of the prepared COVID-Xray-5k

ataset . Section 3 presents the description of the overall proposed

ramework. Section 4 provides the experimental studies and com-
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Fig. 3. The architecture of ResNet18 model ( He, 2016 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Number of images per category in COVID-Xray-5k dataset. 

Split COVID-19 Non-COVID 

Training Set 84 (420 after augmentation) 2000 

Test Set 100 3000 
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parison with previous works. And finally the paper is concluded in

Section 5 . 

2. COVID-Xray-5k Ddataset 

Chest X-ray images from two datasets formed the COVID-Xray-

5k dataset that contains 2084 training and 3100 test images. 

One of the used datasets is the recently published Covid-

Chestxray-Dataset , which contains a set of images from pub-

lications on COVID-19 topics, collected by https://github.com/

ieee8023/covid-chestxray-dataset , Cohen et al. (2020) . This dataset

contains a mix of chest X-ray and CT images. As of May 3, 2020,

it contained 250 X-ray images of COVID-19 patients, from which

203 images are anterior-posterior view. It is mentioned that this

dataset is continuously updated. It also contains some meta-data

about each patients, such as sex and age. Our COVID-19 images

are all coming from this dataset. Based on our board-certified ra-

diologist advice, only anterior-posterior images are kept for Covid-

19 prediction, as the lateral images are not suitable for this pur-

pose. The anterior-posterior images were examined by our board-

certified radiologist, and the ones without even the slightest ra-

diographic signs of Covid-19 were removed from dataset. Out of

203 interior-exterior X-ray images of COVID-19, 19 of them were

excluded, and 184 images (which showed clear signs of COVID-19)

were kept by our radiologist. This way, we can provide the commu-

nity a more cleanly labeled dataset. Out of these images, we chose

100 COVID-19 images to include in the test set (to meet some max-

imum confidence interval value), and 84 COVID-19 images for the

training set. Data augmentation is applied to the training set to in-

crease the number of COVID-19 samples to 420 as described above.

We made sure all images for each patient go only to one of the

training or test sets. It is worth mentioning that our radiologist

marked the regions with specific signs of Covid-19. 

Since the number of Non-Covid images was very small in

the ( https://github.com/ieee8023/covid-chestxray-dataset ) dataset,

additional images were employed from the ChexPert dataset

( Irvin et al., 2019 ), a large public dataset for chest radiograph in-

terpretation consisting of 224,316 chest radiographs of 65,240 pa-

tients, labeled for the presence of 14 sub-categories (no-finding,

Edema, Pneumonia, etc.). For the non-COVID samples in the train-

ing set, we only used images belonging to a single sub-category,

composed of 700 images from the no-finding class and 100 images

from each remaining 13 sub-classes, resulting in 20 0 0 non-COVID

images. 

As for the Non-COVID samples in the test dataset, we selected

1700 images from the no-finding category and around 100 images

from each remaining 13 sub-classes in distinct sub-folders, result-

ing in 30 0 0 images in total. The exact number of images of each

class for both training and testing is given in Table 1 . 

Fig. 2 shows 16 sample images from COVID-Xray-5k dataset, in-

cluding 4 COVID-19 images (the first row), 4 normal images from
hexPert (the second row), and 8 images with one of the 13 dis-

ases in ChexPert (third and fourth rows). 

It is worth mentioning that, there is wide variation inn the res-

lution of images in this dataset. There are some low-resolution

mages in Covid-19 class (below 400 × 400), and some high resolu-

ions ones (more than 1900 × 1400). This is a positive point for the

odels that can achieve a reasonable high accuracy on this dataset,

espite this variable image resolution and imagery methodology.

ollecting all images in a super-controlled environment that results

n high-resolution and super-clean images, although desired, is not

lways doable, and as machine learning field progresses, more and

ore focus is directed toward models and frameworks that can

ork reasonably well on variable resolution, quality, and small-

cale labeled datasets. Also the images of Covid-19 class are col-

ected from multiple sources by the original provider, and some of

hem may show a different dynamic range from other ones (and

lso from ChexPert), but during the training all images are nor-

alized to the same distribution to make model less sensitive to

hat. 

. The proposed framework 

To overcome the limited data sizes, transfer learning was used

o fine-tune four popular pre-trained deep neural networks on the

raining images of COVID-Xray-5k dataset. 

.1. Transfer learning approach 

In transfer learning, a model trained on one task is re-purposed

o another related task, usually by some adaptation toward the

ew task. For example, one can imagine using an image classifi-

ation model trained on ImageNet (which contains millions of la-

eled images) to initiate task-specific learning for COVID-19 detec-

ion on a smaller dataset. Transfer learning is mainly useful for

asks where enough training samples are not available to train a

odel from scratch, such as medical image classification for rare

r emerging diseases. This is especially the case for models based

n deep neural networks, which have a large number of parame-

ers to train. By using transfer learning, the model parameters start

ith already-good initial values that only need some small modi-

cations to be better curated toward the new task. 

There are two main ways in which the pre-trained model is

sed for a different task. In one approach, the pre-trained model

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
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Fig. 4. The architecture of SqueezeNet based on “fire modules”. Courtesy of Google 

( https://codelabs.developers.google.com/codelabs/keras- flowers- squeezenet/ ). 

Fig. 5. The architecture of a DenseNet with 5 layers, with expansion of 4. Courtesy 

of model ( Huang et al., 2017 ). 

i  

p  

s  

a  

t  

a  

t

 

g  

v  

m  

f  

(  

(  

o  

u

3

R

 

R  

p  

m  

Fig. 6. The predicted probability scores by ResNet18 on the test set. 

Fig. 7. The predicted probability scores by ResNet50 on the test set. 
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s treated as a feature extractor (i.e., the internal weights of the

re-trained model are not adapted to the new task), and a clas-

ifier is trained on top of it to perform classification. In another

pproach, the whole network, or a subset thereof, is fine-tuned on

he new task. Therefore the pre-trained model weights are treated

s the initial values for the new task, and are updated during the

raining stage. 

In our case, since the number of images in the COVID-19 cate-

ory is very limited, we only fine-tune the last layer of the con-

olutional neural networks, and essentially use the pre-trained

odels as a feature extractor. We evaluate the performance of

our popular pre-trained models, ResNet18 ( He, 2016 ), ResNet50

 He, 2016 ), SqueezeNet ( Iandola et al., 2016 ), and DenseNet-121

 Huang et al., 2017 ). In the next section we provide a quick

verview of the architecture of these models, and how they are

sed for COVID-19 recognition. 

.2. COVID-19 Detection using residual ConvNet – ResNet18 and 

esNet50 

One of the models used in this work, is the pre-trained

esNet18, trained on ImageNet dataset. ResNet is one of the most

opular CNN architecture, which provides easier gradient flow for

ore efficient training, and was the winner of the 2015 ImageNet
ompetition. The core idea of ResNet is introducing a so-called

dentity shortcut connection that skips one or more layers. This

ould help the network to provide a direct path to the very early

ayers in the network, making the gradient updates for those layers

uch easier. 

The overall block diagram of ResNet18 model, and how it is

sed for COVID-19 detection is illustrated in Fig. 3 . ResNet50 ar-

hitecture is pretty similar to ResNet18, the main difference being

aving more layers. 

.3. COVID-19 Detection using SqueezeNet 

SqueezeNet ( Iandola et al., 2016 ) proposed by Iandola et al.,

s a small CNN architecture, which achieves AlexNet-level

 Krizhevsky et al., 2012 ) accuracy on ImageNet with 50 × fewer

arameters. Using model compression techniques, the authors

ere able to compress SqueezeNet to less than 0.5MB, which made

t very popular for applications that require light-weight models.

hey alternate a 1 × 1 layer that “squeezes” the incoming data in

he vertical dimension followed by two parallel 1 × 1 and 3 × 3

onvolutional layers that “expand” the depth of the data again.

https://codelabs.developers.google.com/codelabs/keras-flowers-squeezenet/
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Fig. 8. The predicted probability scores by SqueezeNet on the test set. 

Fig. 9. The predicted probability scores by DesneNet-121 on the test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The precision-recall curve of four CNN architectures on test set. 

Fig. 11. The ROC curve of four CNN architectures on COVID-19 test set. 

3

 

t  

p  

l

L  

w  

i  

f  

t  

t

4

4

 

i  

f  

s  
Three main strategies used in SqueezeNet includes: replace 3 × 3

filters with 1 × 1 filters, decrease the number of input channels to

3 × 3 filters, Down-sample late in the network so that convolution

layers have large activation maps. Fig. 4 shows the architecture of

a simple SqueezeNet. 

3.4. COVID-19 Detection using DenseNet 

Dense Convolutional Network (DenseNet) is another popular ar-

chitecture ( Huang et al., 2017 ), which was the winner of the 2017

ImageNet competition. In DenseNet, each layer obtains additional

inputs from all preceding layers and passes on its own feature-

maps to all subsequent layers. Each layer is receiving a âǣcollective

knowledgeâǥ from all preceding layers. Since each layer receives

feature maps from all preceding layers, network can be thinner and

compact, i.e., number of channels can be fewer (so, it have higher

computational efficiency and memory efficiency). The architecture

of sample DenseNet is shown in Fig. 5 . 
.5. Model training 

All employed models are trained with a cross-entropy loss func-

ion, which tries to minimize the distance between the predicted

robability scores, and the ground truth probabilities (derived from

abels), and is defined as: 

 CE = −
N ∑ 

i =1 

p i log q i , (1)

here p i and q i denote the ground-truth, and predicted probabil-

ties for each image, respectively. We can then minimize this loss

unction using stochastic gradient descent algorithm (and its varia-

ions). We attempted to add regularization to the loss function, but

he resulting model was not exhibiting a better performance. 

. Experimental results 

.1. Model hyper-parameters 

We fine-tuned each model for 100 epochs. The batch size

s set to 20, and ADAM optimizer is used to optimize the loss

unction, with a learning rate of 0.0 0 01. All images are down-

ampled to 224 × 224 before being fed to the neural network
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Fig. 12. The confusion matrix of the proposed ResNet18 model. 

Fig. 13. The confusion matrix of the proposed SqueezeNet framework. 
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Table 2 

Sensitivity and specificity rates of 

ResNet18 model, for different threshold 

values. 

Threshold Sensitivity Specificity 

0.1 100% 72.4% 

0.17 98% 90.7% 

0.2 95% 92.4% 

0.25 91% 95.8% 

0.35 85% 98.3% 

Table 3 

Sensitivity and specificity rates of 

ResNet50 model, for different threshold 

values. 

Threshold Sensitivity Specificity 

0.15 100% 78.2% 

0.205 98% 89.6% 

0.25 93% 94.2% 

0.3 90% 97.3% 

0.35 85% 98.4% 

Table 4 

Sensitivity and specificity rates of 

SqueezeNet model, for different threshold 

values. 

Threshold Sensitivity Specificity 

0.1 100% 89.9% 

0.15 98% 92.9% 

0.2 96.0% 94.6% 

0.4 92% 97.6% 

0.5 87% 98.3% 
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as these pre-trained models are usually trained with a specific

mage resolution). All our implementations are done in PyTorch

 https://pytorch.org/ ), and are publicly available at https://github.

om/shervinmin/DeepCovid.git . 

.2. Evaluation metrics 

There are different metrics which can be used for evaluating the

erformance of classification models, such as classification accu-

acy, sensitivity, specificity, precision, and F1-score. Since the cur-

ent test dataset is highly imbalanced (100 COVID-19 images, 3000

on-COVID image), sensitivity and specificity are two proper met-

ics which can be used for reporting the model performance: 

ensitivity = 

# Images correctly predicted as COVID-19 

# Total COVID-19 Images 
, 

Specificity = 

# Images correctly predicted as Non-COVID 

# Total Non-COVID Images 
. (2) 

.3. Model predicted scores 

As mentioned earlier, we focused on four popular convolutional

etworks, ResNet18, ResNet50, SqueezeNet, DenseNet121. These

odels predict a probability score for each image, which shows

he likelihood of the image being detected as COVID-19. By com-

aring this probability with a cut-off threshold, we can derive a bi-

ary label showing if the image is COVID-19 or not. An ideal model

hould predict the probability of all COVID-19 samples close to 1,

nd non-COVID samples close to 0. 
Figs. 6 –9 show the distribution of predicted probability scores

or the images in the test set, by ResNet18, ResNet50, SqueezeNet,

nd DenseNet-161 respectively. Since Non-COVID class in our study

ontains both normal cases, as well as other types of diseases,

e provide the distribution of predicted scores for three classes:

OVID-19, Non-COVID normal, and Non-COVID other diseases. As

e can see the Non-Covid images with other disease types have

lightly larger scores than the Non-COVID normal cases. This

akes sense, since those images are more difficult to distinguish

rom COVID-19, than normal samples. 

COVID-19 patient images are predicted to have much higher

robabilities than the Non-COVID images, which is really encour-

ging, as it shows the model is learning to discriminate COVID-

9 from non-COVID images. Among different models, it can be ob-

erved that SqueezeNet does a much better job in pushing the pre-

icted scores for COVID-19 and Non-COVID images farther apart

rom each other. 

.4. Model sensitivity and specificity 

Each model predicts a probability score showing the chance of

he image being COVID-19. We can then compare these scores with

 threshold to infer if the image is COVID-19 or not. The predicted

abels are used to estimate the sensitivity and specificity of each

odel. Depending on the value of the cut-off threshold, we can

et different sensitivity and specificity rates for each model. 

Tables 2–5 show the sensitivity and specificity rates for dif-

erent thresholds, using ResNet18, ResNet50, SqueezeNet, and

enseNet-121 models, respectively. As we can see, all these mod-

ls achieve very promising results, and the best performing model

btains a sensitivity rate of 98% and specificity rate of 92.9%.

queezeNet and ResNet18 achieve slightly better performance than

he other models. 

https://pytorch.org/
https://github.com/shervinmin/DeepCovid.git


8 S. Minaee, R. Kafieh and M. Sonka et al. / Medical Image Analysis 65 (2020) 101794 

Fig. 14. COVID-19 infected regions detected by our ResNet18 model, in six chest X-ray images from the test set. Vertical sets give the Original images (top row), COVID-19 

region heatmap (2nd row), heatmap overlaid on the image (3rd row), and the independent standard of radiologist-marked COVID-19 disease regions (bottom row). 

Table 5 

Sensitivity and specificity rates of 

DenseNet-121 model, for different 

threshold values. 

Threshold Sensitivity Specificity 

0.19 98% 75.1% 

0.25 95% 88.9% 

0.3 90% 94.6% 

0.4 79% 98.9% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Comparison of sensitivity and specificity of four state- 

of-the-art deep neural networks. 

Model Sensitivity Specificity 

ResNet18 98% ± 2.7% 90.7% ± 1.1% 

ResNet50 98% ± 2.7% 89.6% ± 1.1% 

SqueezeNet 98% ± 2.7% 92.9% ± 0.9% 

Densenet-121 98% ± 2.7% 75.1% ± 1.5% 
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4.5. Small number of COVID-19 cases and model reliability 

It is worth mentioning that since so far the number of reliably

labeled COVID-19 X-ray images is very limited, and we only have

100 test images in COVID-19 class, the sensitivity and specificity

rates reported above may not be reliable. Ideally more experiments

on a larger number of test samples with COVID-19 is needed to

derive a more reliable estimation of sensitivity rates. We can how-

ever estimate the 95% confidence interval of the reported sensitiv-

ity and specificity rates here, to see what is the possible range of

these values for the current number of test samples in each class.

The confidence interval of the accuracy rates can be calculated as:

r = z 

√ 

accuracy (1 − accuracy ) 

N 

, (3)

where z denotes the significance level of the confidence interval

(the number of standard deviation of the Gaussian distribution),

accuracy is the estimated accuracy (in our cases sensitivity and

specificity), and N denotes the number of samples for that class.

Here we used 95% confidence interval, for which the correspond-

ing value of z is 1.96. 

As for COVID-19 diagnostic, having a sensitive model is crucial,

we choose the cut-off threshold corresponding to a sensitivity rate

of 98% for each model, and compare their specificity rates. Table 6

provides a comparison of the performance of these four models on

the test set. As we can see the confidence interval of specificity
ates are small (around 1%), since we have around 30 0 0 samples

or this class, whereas for the sensitivity rate we get slightly higher

onfidence interval (around 2.7%) because of the limited number of

amples. 

.6. The ROC curve, precision recall curve, and confusion matrix 

It is hard to compare different models only based on their

ensitivity and specificity rates, since these rates change by vary-

ng the cut-off thresholds. To see the overall comparison between

hese models, we need to look at the comparison for all possi-

le threshold values. One way to do this, is through the precision-

ecall curve, which provides the precision rate as a function of re-

all rate. Precision is defined as the true positive images divided by

he total number of images flagged as positive by the model, and

he recall is the same as sensitivity rate (defined in Eq. (2) ). The

recision-recall curve of these four models is shown in Fig. 10 . 

Another way to do this, is through the Receiver operating char-

cteristic (ROC) curve, which provides the true positive rate as a

unction of false positive rate. The ROC curve of these four mod-

ls is shown in Fig. 11 . All models have a similar performance

ccording to the AUC with the SqueezeNet achieving a slightly

igher AUC than the other models. It is worth mentioning that for

ighly imbalanced test sets, the AUC may not be a good indica-

ive of model performance (as it can be very high), and looking

t average-precision and precision-recall curve would be a better

hoice in that case. Here we provided both curves for the sake of

ompleteness. 
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To see the exact number of correctly samples as COVID-19

nd Non-COVID, the confusion matrices of the two top-performing

odels – the fine-tuned ResNet18 and SqueezeNet – when classi-

ying the set of 3100 test images are shown in Figs. 12 and 13 . 

.7. The heatmap of potentially infected regions 

We used a simple technique to detect the potentially infected

egions, while performing COVID-19 detection. This technique is in-

pired by the work of Zeiler and Fergus (2014) , to visualize the re-

ult of deep convolutional networks. We start from the top-left cor-

er of the image, and each time occluding a square region of size

 × N inside the image, and make a prediction using the trained

odel on the occluded image. If occluding that region causes the

odel to mis-classify a COVID-19 image as Non-COVID, that area

ould be considered as a potentially infected region in chest X-ray

mages (mainly because removing the information of that part led

o model mis-classification). On the other hand, if occluding a re-

ion does not impact the model’s prediction, we infer that region

s not infected. Once we repeat this procedure for different slid-

ng windows of N × N , each time shifting them with a stride of

 , we can get a saliency map of the potentially infected regions in

etecting COVID-19. The detected regions for six example COVID-

9 images from our test set are shown in Fig. 14 . The likely re-

ions of COVID-19 disease marked by our board-certified radiol-

gist are shown in blue on the last row. The generated heatmaps

how a good agreement with the radiologist-determined regions of

he COVID-19 disease. 

. Conclusion 

We reported a deep learning framework for COVID-19 detection

rom Chest X-ray images, by fine-tuning four pre-trained convo-

utional models (ResNet18, ResNet50, SqueezeNet, and DenseNet-

21) on our training set. We prepared a dataset of around 5k im-

ges, called COVID-Xray-5k (using images from two datasets), with

he help of a board-certified radiologist to confirm the COVID-19

abels. We make this dataset publicly available for the research

ommunity to use as a benchmark for training and evaluating fu-

ure machine learning models for COVID-19 binary classification

ask. We performed a detail experimental analysis evaluating the

erformance of each of these 4 models on the test set of COVID-

ray-5k Dataset, in terms of sensitivity, specificity, ROC, and AUC.

or a sensitivity rate of 98%, these models achieved a specificity

ate of around 90% on average. This is really encouraging, as it

hows the promise of using X-ray images for COVID-19 diagnos-

ics. This study is conducted on a set of publicly available images,

hich contains around 200 COVID-19 images, and 50 0 0 non-COVID

mages. The presented work is reflecting one of the earliest Covid-

9 chest X-ray analysis and dataset preparation attempts, which

rings time-sensitive relevance in combining these two aspects.

owever, due to the limited number of COVID-19 images publicly

vailable so far, further experiments are needed on a larger set of

leanly labeled COVID-19 images for a more reliable estimation of

he accuracy of these models. 
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